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Attenuation Characteristics in Confocal Annular
Elliptic Waveguides and Resonators

Julio C. Gutiérrez-Vega, Ramoén M. Rodriguez-DagniMember, IEEEand Sabino Chavez-Cerda

Abstract—The perturbation method is used to obtain the atten-
uation constant andQ@-factor of several TEM, TE, and TM modes
in confocal annular elliptic waveguides (CAE-WSs) and confocal an-
nular elliptic resonators (CAE-Rs). Normalized attenuation and
Q-factor charts are given for a variety of possible combinations
of the focal distance and the eccentricities. Comparisons between
the first higher mode in a CAE-W and a coaxial waveguide with
the same cutoff frequency and cross-sectional propagating area re-
veals a lower attenuation in elliptic geometry. Consequently, the
Q-factor in a CAE-R is 20%—40% greater than a @ factor for a
coaxial resonator with the same volume and resonant frequency.

Index Terms—Attenuation constant, confocal annular elliptic
waveguides, Mathieu functions, perturbation theory, @ factor,
resonators.

. INTRODUCTION

HE confocal annular elliptic (CAE) structures have founc > n=3mu2
increasing application in the design of several microwave

devices, e.g., microstrip antennas, resonators, and coaxkigll. Geometry of the CAE structure. The elliptic coordinates are defined
probes [1]-[4]. In particular, the elliptic geometry is becominy ” = ¢ coshi&cosy andy = p sinh & sin iy, wheret € [0, o) is theradial

. ._ .. toordinateyp € [0, 27) is theangularcoordinate, ang is the focal distance.
more popular, as it allows a better control of the polarization
characteristics, and facilitates the design by changing both ] ) )
eccentricity and focal length to tune the parameters of intere@dius of curvature is very large compared to the skin depth in
CAE structures have been studied by many authors, the forrH metal. _ _ _
solution for the propagating modes in confocal annular elliptic Th€ purpose of this paper is to present the analysis of the at-
waveguides (CAE-Ws) was presented by King and Wiltse [5tﬁnuat|on characteristics of CAE-Ws and CAE-Rs. In particular,
Alhargan and Judah [6] provided charts of cutoff frequencidée apply first-order pertgrbation theory to find the theoretical
for confocal annular elliptic resonators (CAE-Rs), analyticdPrmulas for the attenuation constant of the CAE-W, and¢he
solutions for frequencies and mode shapes of acoustic CAEJRg!or for the CAE-R due to conductor losses for TEM, TE, and
were obtained by Hong and Kim [7], and more recentl)l,-M modes. We provide normalized attenuation apdactor
Navarroet al. [8] presented a method for analyzing CAE-wEharts to assist microwave designers who need to estimate the
based on the method of moments. On the other hand, the fRgctical utility of these structures. Besides this, we compare
work on attenuation in hollow elliptic waveguides dates badk® attenuations charts for CAE-Ws and CAE-Rs with respect
to 1938 by Chu [9], where charts for the six lowest modé&® corresponding charts for coaxial waveguides and resonators.
were given. The results of Chu were revised and corrected bjese comparisons can help in the study of coaxial waveguides
several authors in the early 1970s [10]-[12]. Rengarajzai. that are dgformed to elliptic waveguides by applying an external
[13] proved that the use of the intrinsic impedance at all poin€rturbation, e.g., pressure.

on the elliptic surface yields practical results, as long as the
Il. LOSSES DUE TOCONDUCTING WALLS
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) ) 2
The formal solution for the traveling modes of CAE-Ws Lo — ce’(n) dn (5¢)

and resonant modes of CAE-Rs under lossless condi- 0 +/cosh®& — cos? q

tion can be found in the literature [5]-[7]. The analyt- & p2w

ical expressions of the fields are written in terms of ra- -74:/ / [3'2(5)662(77)+R2(€)CGI2(U)} dndg.
dlal [GR(S) = Ccrn(gv Q) + FrnFCyrn(Sv Q)] and angLIIar ! 0 5d
[cem(n, q)] even Mathieu functions, wherg,,, is a constant (5d)

andg = ¢, is therth eigenvalue of the characteristic equation The prime denotes the first derivative with respect to the ar-
corresponding to the Dirichlet or Neumann condition of thgument or 7, as the case may be. The attenuation constants for
electric field at the walls. In the same manner, the odd solutioagdd modes are calculated by replacing the even parameters and
are written as[,R(¢) = Sem(€,q) + GnGeym(€,9)] and Mathieu functions in the above equations by its corresponding
[sem (1, @)]- odd ones.

A. Attenuation Constant for CAE-Ws B. @ Factor for CAE-Rs

According to the first-order perturbation method [14], the BY following the standard procedure [14], we find that the
attenuation constant (Np/m) for a given propagating modenormalized@ factors are given by

(r,m) is written asa = Pr/2Pr, where P, is the per-unit Qrem _ T\/DT < &—& ) ©)
length power loss, and® is the power flowing through the V2o ZL 4N \e1K(e?) +eoK (¢3)

waveguide. On the other hand, thefactor for a given reso- Qe 5 o o]l/4

nant moder, m, p) is given by@Q = w***U/P, whereU is the J20ZL :[16(1A +pT }

energy stored in the resonator, alds the average power loss. 642 I;A2 + p>721,

. . . . _ . [ 7
E_vall_Jatmga and the factor due tq Ios_ses in imperfect dielec 1287 AN3 + 227 BA + 4p°n°1, (7)
tric yields the same results for a cylindrical structure of any cross 0 1/4 I
section [14]. Therefore, we shall restrict ourselves to calculate ™ [16qA2 + p27r2} m (8)
the losses due to finite conductivity of the elliptic walls. V20 ZL el

The conducting losses are calculated by involving the innéthereA = L/2p, I, is defined in (5d), and
and outer conductors, where we have applied a constant surface & 2w
impedanceR,, = \/wy/20 in each point of the surfaces. The 15 = / / R*(&)ce*(n) [COShQ ¢ — cos’? 77} dndé.
normalized attenuation constants are given by Lo

VV | e1 K (€2) + eaK (€2 I1l. A TTENUATION CHARTS FORCAE-WSs
XTEM V O’Zp = : ( 1) 2 ( 2) (1) . . .
V2r & —& From (1), itis evident that the attenuation for TEM modes de-
; gL/ 4qA W2 _1 pends on the square root of thg frequency. Once the dime_nsions
artey oZp =35I \/ﬁ +B ST (2) ofthe guide have been determineds calculated by evaluating
4 B the elliptic integrals, which are tabulated and plotted elsewhere
\/Z— _ q/tc w3 3 [16]. Calculating the attenuation constant for TE and TM modes
ATMV 04" = 2I, VWw2_-1 ©) is a more complicated task because it implies the evaluation of
- o integrals involving the Mathieu functions and its derivatives.
whereZ = \/u/¢ is the intrinsic impedance/ = pk = |y orderto plot the attenuation constants for the higher modes,
Ve pw, the eccentricities are written as = 1/cosh(&),  we see that the right-hand side of (2) and (3) are function of

. . —1/2 . .. . . .
K(e?) = 5/2 dn (1 — e?sin®n) s the complete elliptic the dimensionless paramefér= /u¢’pw, and the remaining

integral of the first kindJ¥ is the normalized angular frequencyguantities depend exclusively @a and ;. This fact permits

W w w 1% @ us to plot for each mode a single chart for any combination of
= R = - = 21 the eccentricities. We have applied a Newton—Cotes high-order
welh (o) VA VA method to evaluate the single integréls, and we have taken

and advantage of the separability @f and I; to split them into
I ) single integrals. We have used the Bessel function product se-
A=R(&) I + R (&)ho ries for evaluating the radial Mathieu functions of the first and
B =R*(&1) D1 4+ R* (&)1 second kinds, and the usual Fourier series for angular Mathieu
C =R*(&) 51 + R*(&) . functions [15]-{17]. The results of our numerical routines for

computing Mathieu functions have been compared with respect
The integrald/; ; are given by the following expressions forto results from recent publications [18], [19] and an accuracy

eachi = {1,2}: of 10~ was obtained. The routines also have been used to re-
o produce the sequence of eigenvalues in an elliptic waveguide,
Iy; :/ ce®(n)y/cosh’ & — cos? ndn (5a) showing an excellent agreement with the values reported in the
02 literature [20], [21].
I, — " ce”(n) d Curves of normalized attenuation constants for the lower
2 = 7 (5b)

0o ecosh?& —cos?n modes are given in Figs. 2—4. We include in each curve the
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Fig. 2. Normalized attenuation charts {0FE., with e; = 0.3. Fig. 4. Normalized attenuation charts {6FM; with ez = 0.3.
;
¢ ymin o min the cutoff frequency in even modes. On the other hand, for the
V' v o .
o 035 [0593 |0.795 same values af; andes, the cutoff frequency for TM modes is
notably larger than TE modes.
From Figs. 2 and 3, it is clear that the attenuation for domi-
o8 nant mode, TE; is slightly larger than the attenuation of the
o even,TE,; for the same value of frequency and eccentricities.
oo07 0.369 | 0.621 | 0.617 However,TE;; modes behave differently, as seen in Fig. 4.
S For each combination ef; andes, there is a frequency range
%06 087 | 0.646 | 0581 where the modes have the lowest attenuation. The valu&'tf
is determined by differentiating, with respectid, (2) and (3),
0403|0668 | 0481 and equating to zero. For TE modes, we obtain
051 0.418 [ 0.688 | 0.449
0.432 | 0.707 | 0.427
0.445 | 0.725 { 0.411 10 8 6 4
0.469 | 0.759 | 0.39 W= —Ww" - (2 + 9G)W + (2 + 15G)W
045 0.491 | 0.792 { 0.379 2
A L S S +A-THOW +G-1=0
04 0.5 0.6 0.7 0.8 0.9 1 11 1.2 13 14

V= ()" po .
whereG = (4gA/B)?. The only real root larger than unity of

Fig. 3. Normalized attenuation charts f6FE,; with e, = 0.3. this even-polynomial corresponds to the minimi and it is
related toV™* by (4). From the data of Figs. 2 and 3, we can
numerical values of the normalized cutoff frequericy, the Se€ thal”™* is approximately 150%-170% greater thei.
frequency corresponding to minimum attenuatigfi®, and N the same manner, for TM ques, we obtain the exact and
minimum attenuatiomy™® remarkable resuly™i* = /3, which leads td/™i» = \/3V¢,
Comparison ofV’¢ in Figs. 2—4 for the same values of S Can be observed in Fig. 4. From the attenuation charts, it is
and e» shows that, TE;; becomes the first higher mode forévident that,_ atagiven frequency and foga_l separation distance,
CAE-Ws. A physical explanation of this result is that the erihe attenuation increases as the eccentricities get closer.

ergy in even modes has a tendency to vibrate along:theis If we changec, by maintaining constanty, the cutoff fre-
of the ellipse, whereas the odd modes do it alongitaxis. duencies of the TE modes behave differently than the cutoff fre-

This fact leads tow® < ,w° and. TE;; to be the fundamental quencies of the TM modes. In chgrts for TE modes (Figs. 2 and
mode inhollow elliptic waveguides [9], [20], [22]. However, in 3); We see that’® increases as, increases, whereas for TM
the confocahnnulargeometry, the inner conductor changes th@des (Fig. 4)}* decreases as increases. In both cases, the
relative distances (see Fig. 1) such that now the vertical sepdfa@nge off’® occurs more slowly as, becomes larger.

tion ¥’ becomes larger than the horizontal separatiorFrom It must be mentioned that the attenuation charts for CAE-Ws
Fig. 1, it is straightforward to prove that do not tend to charts for hollow elliptic waveguides [10] as
e — 1(i.e., & — 0). The reason for this is that the boundary
V—d = g[eXp(—Sl) — exp (_52)} >0 condition at; is maintained wheg&, — 0 (similar to a thin con-

ducting sheet joining the foci along the waveguide, Fig. 1), and
foranyé > & > 0. As a consequence of this result, the eveih is obviously a condition not present in hollow waveguides.
modes vibrate in shorter distances than odd modes and, thdgwever, when the focal separation tends to zero, we recover
the cutoff frequency of the odd modes becomes smaller thidne coaxial waveguide charts.
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Fig. 6. Normalized)-factor charts for, TE;;; with e, = 0.3. Fig. 8. Attenuation charts fofE;; in a CG and, TE;; in a CAE-W, with
the same cutoff frequency and cross-sectional area.

IV. Q-FACTOR CHARTS FORCAE-Rs

) ) . . (8), asA — 0, the value of@ for TE and TM modes tends
In Figs. 5-7, we include charts of the normalizgdactorin 1o, /5, Z1./8, and besides, this limit is equal for the coaxial
function of dimensionless parameter= L/2p. The resonant resonator (CR) when the same normalization is applied. How-

frequencies for TE or TM modes in the resonator are given @Oer, at a givem\ > 0, the Q-factor for TE,.,, , modes be-
[7] on

comes greater thap for TM,. ,, , modes. By comparing Figs. 5

and 6, we observe th& in even-TE modes is larger th&pin

e = (9) o0dd-TE modes, similarly() in odd-TM modes is greater than
n 27/ e Q in even-TM modes. At a given, the @@ factor decreases as

From (9) and data of cutoff frequencies in Figs. 2—4, itis cle:g?e eccentricities get closer, and this occurs more rapidly as the
res ros eccentricities become smaller.
that, /155 and. f§i5 become the fundamental resonant frequen-
cies for TE and TM modes, respectively. In particular, for TM

res 1

modes, the substitution = 0 in (9) leads tof*<, , = 7?7%’ V. COMPA?:ISON BETC\;NEEN CAE-\IIQVS AND CAE-Rs WITH
and the resonant frequencies coincide with cutoff frequencies OAXIAL GUIDES AND RESONATORS

of the equivalent waveguide. Since the results of the perturbain Fig. 8, we show the attenuation charts for the first higher

tion method are valid for frequencies not so close to the cutaoffodeTE,, in a copper air-filled coaxial guide (CG), and for
condition, the charts correspondingzte= 0 are not included. the highest mode, TE;; in a copper air-filled CAE-W. In
Similar to CAE-WSs, for the same value of the eccentricierder to make appropriate comparisons, both guides have the

ties, the presence of the inner conductor in the CAE-R leasiame cutoff frequency and cross-sectional propagating area.
to , fres res for TE and TM modes. From (7) and The expressions for the attenuation due to conducting walls in

odr,m,p < eJr,m,p
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0.5% smaller than the largest axis, and the curves get very close.
Similar to the above example, the curves intersect at a specific
frequencyfcr=s, The CAE-W presents a lower attenuation than
the CG in the neighborhood around a minimunuof

Finally, a comparative chart between the factor of the
TE;;; mode in a CR and theTE;;; mode in a CAE-R is
given in Fig. 10. In order to have the same resonant frequency
and volume in both resonators asincreases, we select the
size of the cross sections and the physical quantities equal to
the example of Fig. 8. One result of this comparison is that the
Q@ factor in a CAE-R is 20%—-40% greater than tQefactor
for CR if both resonators operate in their first higher mode. By
makingL — oo in (7) and (8), the upper limits of for TE
and TM modes are given b@rr = 2¢*/4I5/0Zp/A, and
QM = 2¢Y*1\/oZp/C.

VI. CONCLUSIONS

The first-order perturbation method has been used to calcu-
late the attenuation ang-factor parameters due to conducting
losses in CAE-Ws and CAE-Rs. An important consequence of
incorporating the inner elliptic conductor is that the odd modes
become more dominant than even modes, in particular, the mode
- TE11 becomes the first higher mode in CAE-Ws. Normaliza-
tion of the attenuation constant aGdfactor makes it possible to
present for each mode a single chart for all possible combina-
tions of frequencies, eccentricities, focal separation distances,
and conductivities. It was found that the attenuation increases
and the factor decreases as the eccentricities of the conductors
get closer, and this occurs more rapidly as the eccentricities be-
comes smaller. Appropriate comparisons between CAE-Ws and
CGs exhibit the lower cutoff frequency and attenuation for the
elliptic geometry. In the same manner, it was found that CAE-Rs
present a large€} factor than a CR with the same volume if
both work in their first higher mode. A supplement to this paper,
including the lossless solutions and additional figures, can be
found onlinet

the same resonant frequency and volumé ascreases. Note th&?-axis scale
starts at 4000.

1
a CG can be found in [14]. The dimensions, cutoff frequency,[ ]

and minima attenuations for both guides are included. From
Fig. 8, we see that, closer 5™, the CAE-W has lowet than

the CG, but at higher frequencies, the attenuation in CAE-Ws
increases more rapidly than the attenuation in the CG. It is in-
teresting to see that there exists a frequefiéy*> where both [l
guides have the same attenuation. This intersection frequency
can be calculated by equating the attenuation constants for thg]
CG and CAE-W, but unfortunately, the complexity of (2) im-
pedes to obtain a closed-form expression, @f** must be 5
evaluated by finding the roots of a transcendental equation.

In Fig. 9, we compare the attenuation curves in a CAE-W as
its geometry tends to a CG. Contrary to the previous example,[G]
here we change the eccentricities and focal distance in each
curve such that the largest axes of the ellipses maintain alway$’]
the same value as the radii of the CG. We can see that atten-
uation increases and cutoff decreases as the CAE-W becomes

(2]
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