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Attenuation Characteristics in Confocal Annular
Elliptic Waveguides and Resonators

Julio C. Gutiérrez-Vega, Ramón M. Rodríguez-Dagnino, Member, IEEE, and Sabino Chávez-Cerda

Abstract—The perturbation method is used to obtain the atten-
uation constant and -factor of several TEM, TE, and TM modes
in confocal annular elliptic waveguides (CAE-Ws) and confocal an-
nular elliptic resonators (CAE-Rs). Normalized attenuation and

-factor charts are given for a variety of possible combinations
of the focal distance and the eccentricities. Comparisons between
the first higher mode in a CAE-W and a coaxial waveguide with
the same cutoff frequency and cross-sectional propagating area re-
veals a lower attenuation in elliptic geometry. Consequently, the

-factor in a CAE-R is 20%–40% greater than a factor for a
coaxial resonator with the same volume and resonant frequency.

Index Terms—Attenuation constant, confocal annular elliptic
waveguides, Mathieu functions, perturbation theory, factor,
resonators.

I. INTRODUCTION

T HE confocal annular elliptic (CAE) structures have found
increasing application in the design of several microwave

devices, e.g., microstrip antennas, resonators, and coaxial
probes [1]–[4]. In particular, the elliptic geometry is becoming
more popular, as it allows a better control of the polarization
characteristics, and facilitates the design by changing both
eccentricity and focal length to tune the parameters of interest.
CAE structures have been studied by many authors, the formal
solution for the propagating modes in confocal annular elliptic
waveguides (CAE-Ws) was presented by King and Wiltse [5],
Alhargan and Judah [6] provided charts of cutoff frequencies
for confocal annular elliptic resonators (CAE-Rs), analytical
solutions for frequencies and mode shapes of acoustic CAE-Rs
were obtained by Hong and Kim [7], and more recently,
Navarroet al. [8] presented a method for analyzing CAE-Ws
based on the method of moments. On the other hand, the first
work on attenuation in hollow elliptic waveguides dates back
to 1938 by Chu [9], where charts for the six lowest modes
were given. The results of Chu were revised and corrected by
several authors in the early 1970s [10]–[12]. Rengarajanet al.
[13] proved that the use of the intrinsic impedance at all points
on the elliptic surface yields practical results, as long as the
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Fig. 1. Geometry of the CAE structure. The elliptic coordinates are defined
by x = � cosh � cos� andy = � sinh � sin �, where� 2 [0;1) is theradial
coordinate,� 2 [0; 2�) is theangularcoordinate, and� is the focal distance.

radius of curvature is very large compared to the skin depth in
the metal.

The purpose of this paper is to present the analysis of the at-
tenuation characteristics of CAE-Ws and CAE-Rs. In particular,
we apply first-order perturbation theory to find the theoretical
formulas for the attenuation constant of the CAE-W, and the
factor for the CAE-R due to conductor losses for TEM, TE, and
TM modes. We provide normalized attenuation and-factor
charts to assist microwave designers who need to estimate the
practical utility of these structures. Besides this, we compare
the attenuations charts for CAE-Ws and CAE-Rs with respect
to corresponding charts for coaxial waveguides and resonators.
These comparisons can help in the study of coaxial waveguides
that are deformed to elliptic waveguides by applying an external
perturbation, e.g., pressure.

II. L OSSES DUE TOCONDUCTING WALLS

The CAE geometry is shown in Fig. 1, where the elliptic
coordinates are defined. The inner and outer walls correspond
to curves constant and constant, and they have a
sufficiently high-conductivity to be considered as good con-
ductors. The intervening space is completely filled by a ho-
mogeneous lossy dielectric with permittivity ,
and free-space permeability. In particular, for a CAE-R, the
end-plates are at , and . We assume the usual

dependence for traveling waves in a con-
stant cross-sectional structure.
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The formal solution for the traveling modes of CAE-Ws
and resonant modes of CAE-Rs under lossless condi-
tion can be found in the literature [5]–[7]. The analyt-
ical expressions of the fields are written in terms of ra-
dial and angular

even Mathieu functions, where is a constant
and is the th eigenvalue of the characteristic equation
corresponding to the Dirichlet or Neumann condition of the
electric field at the walls. In the same manner, the odd solutions
are written as and

.

A. Attenuation Constant for CAE-Ws

According to the first-order perturbation method [14], the
attenuation constant (Np/m) for a given propagating mode

is written as , where is the per-unit
length power loss, and is the power flowing through the
waveguide. On the other hand, thefactor for a given reso-
nant mode is given by , where is the
energy stored in the resonator, andis the average power loss.
Evaluating and the factor due to losses in imperfect dielec-
tric yields the same results for a cylindrical structure of any cross
section [14]. Therefore, we shall restrict ourselves to calculate
the losses due to finite conductivity of the elliptic walls.

The conducting losses are calculated by involving the inner
and outer conductors, where we have applied a constant surface
impedance in each point of the surfaces. The
normalized attenuation constants are given by

(1)

(2)

(3)

where is the intrinsic impedance,
, the eccentricities are written as ,

is the complete elliptic
integral of the first kind, is the normalized angular frequency

(4)

and

The integrals are given by the following expressions for
each :

(5a)

(5b)

(5c)

(5d)

The prime denotes the first derivative with respect to the ar-
gument or , as the case may be. The attenuation constants for
odd modes are calculated by replacing the even parameters and
Mathieu functions in the above equations by its corresponding
odd ones.

B. Factor for CAE-Rs

By following the standard procedure [14], we find that the
normalized factors are given by

(6)

(7)

(8)

where , is defined in (5d), and

III. A TTENUATION CHARTS FORCAE-WS

From (1), it is evident that the attenuation for TEM modes de-
pends on the square root of the frequency. Once the dimensions
of the guide have been determined,is calculated by evaluating
the elliptic integrals, which are tabulated and plotted elsewhere
[16]. Calculating the attenuation constant for TE and TM modes
is a more complicated task because it implies the evaluation of
integrals involving the Mathieu functions and its derivatives.

In order to plot the attenuation constants for the higher modes,
we see that the right-hand side of (2) and (3) are function of
the dimensionless parameter , and the remaining
quantities depend exclusively on and . This fact permits
us to plot for each mode a single chart for any combination of
the eccentricities. We have applied a Newton–Cotes high-order
method to evaluate the single integrals, and we have taken
advantage of the separability of and to split them into
single integrals. We have used the Bessel function product se-
ries for evaluating the radial Mathieu functions of the first and
second kinds, and the usual Fourier series for angular Mathieu
functions [15]–[17]. The results of our numerical routines for
computing Mathieu functions have been compared with respect
to results from recent publications [18], [19] and an accuracy
of 10 was obtained. The routines also have been used to re-
produce the sequence of eigenvalues in an elliptic waveguide,
showing an excellent agreement with the values reported in the
literature [20], [21].

Curves of normalized attenuation constants for the lower
modes are given in Figs. 2–4. We include in each curve the
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Fig. 2. Normalized attenuation charts forTE with e = 0:3.

Fig. 3. Normalized attenuation charts forTE with e = 0:3.

numerical values of the normalized cutoff frequency, the
frequency corresponding to minimum attenuation , and
minimum attenuation .

Comparison of in Figs. 2–4 for the same values of
and shows that becomes the first higher mode for
CAE-Ws. A physical explanation of this result is that the en-
ergy in even modes has a tendency to vibrate along the-axis
of the ellipse, whereas the odd modes do it along the-axis.
This fact leads to and to be the fundamental
mode inhollowelliptic waveguides [9], [20], [22]. However, in
the confocalannulargeometry, the inner conductor changes the
relative distances (see Fig. 1) such that now the vertical separa-
tion becomes larger than the horizontal separation. From
Fig. 1, it is straightforward to prove that

for any . As a consequence of this result, the even
modes vibrate in shorter distances than odd modes and, thus,
the cutoff frequency of the odd modes becomes smaller than

Fig. 4. Normalized attenuation charts forTM with e = 0:3.

the cutoff frequency in even modes. On the other hand, for the
same values of and , the cutoff frequency for TM modes is
notably larger than TE modes.

From Figs. 2 and 3, it is clear that the attenuation for domi-
nant mode is slightly larger than the attenuation of the
even for the same value of frequency and eccentricities.
However, modes behave differently, as seen in Fig. 4.

For each combination of and , there is a frequency range
where the modes have the lowest attenuation. The value of
is determined by differentiating, with respect to, (2) and (3),
and equating to zero. For TE modes, we obtain

where The only real root larger than unity of
this even-polynomial corresponds to the minimum, and it is
related to by (4). From the data of Figs. 2 and 3, we can
see that is approximately 150%–170% greater than.
In the same manner, for TM modes, we obtain the exact and
remarkable result , which leads to ,
as can be observed in Fig. 4. From the attenuation charts, it is
evident that, at a given frequency and focal separation distance,
the attenuation increases as the eccentricities get closer.

If we change by maintaining constant , the cutoff fre-
quencies of the TE modes behave differently than the cutoff fre-
quencies of the TM modes. In charts for TE modes (Figs. 2 and
3), we see that increases as increases, whereas for TM
modes (Fig. 4), decreases as increases. In both cases, the
change of occurs more slowly as becomes larger.

It must be mentioned that the attenuation charts for CAE-Ws
do not tend to charts for hollow elliptic waveguides [10] as

(i.e., ). The reason for this is that the boundary
condition at is maintained when (similar to a thin con-
ducting sheet joining the foci along the waveguide, Fig. 1), and
it is obviously a condition not present in hollow waveguides.
However, when the focal separation tends to zero, we recover
the coaxial waveguide charts.
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Fig. 5. NormalizedQ-factor charts for TE with e = 0:3.

Fig. 6. NormalizedQ-factor charts for TE with e = 0:3.

IV. -FACTOR CHARTS FORCAE-RS

In Figs. 5–7, we include charts of the normalizedfactor in
function of dimensionless parameter . The resonant
frequencies for TE or TM modes in the resonator are given by
[7]

(9)

From (9) and data of cutoff frequencies in Figs. 2–4, it is clear
that and become the fundamental resonant frequen-
cies for TE and TM modes, respectively. In particular, for TM
modes, the substitution in (9) leads to ,
and the resonant frequencies coincide with cutoff frequencies
of the equivalent waveguide. Since the results of the perturba-
tion method are valid for frequencies not so close to the cutoff
condition, the charts corresponding to are not included.

Similar to CAE-Ws, for the same value of the eccentrici-
ties, the presence of the inner conductor in the CAE-R leads
to for TE and TM modes. From (7) and

Fig. 7. NormalizedQ-factor charts for TM with e = 0:3.

Fig. 8. Attenuation charts forTE in a CG and TE in a CAE-W, with
the same cutoff frequency and cross-sectional area.

(8), as , the value of for TE and TM modes tends
to , and besides, this limit is equal for the coaxial
resonator (CR) when the same normalization is applied. How-
ever, at a given , the -factor for modes be-
comes greater than for modes. By comparing Figs. 5
and 6, we observe that in even-TE modes is larger thanin
odd-TE modes, similarly, in odd-TM modes is greater than

in even-TM modes. At a given, the factor decreases as
the eccentricities get closer, and this occurs more rapidly as the
eccentricities become smaller.

V. COMPARISONBETWEEN CAE-WS AND CAE-RS WITH

COAXIAL GUIDES AND RESONATORS

In Fig. 8, we show the attenuation charts for the first higher
mode in a copper air-filled coaxial guide (CG), and for
the highest mode, in a copper air-filled CAE-W. In
order to make appropriate comparisons, both guides have the
same cutoff frequency and cross-sectional propagating area.
The expressions for the attenuation due to conducting walls in
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Fig. 9. Attenuation charts forTE in a CG and TE in a CAE-W for
different eccentricities, but the same largest axes.

Fig. 10. Q-factor chart forTE in a CR and TE in a CAE-R, with
the same resonant frequency and volume asL increases. Note thatQ-axis scale
starts at 4000.

a CG can be found in [14]. The dimensions, cutoff frequency,
and minima attenuations for both guides are included. From
Fig. 8, we see that, closer to , the CAE-W has lower than
the CG, but at higher frequencies, the attenuation in CAE-Ws
increases more rapidly than the attenuation in the CG. It is in-
teresting to see that there exists a frequency where both
guides have the same attenuation. This intersection frequency
can be calculated by equating the attenuation constants for the
CG and CAE-W, but unfortunately, the complexity of (2) im-
pedes to obtain a closed-form expression, and must be
evaluated by finding the roots of a transcendental equation.

In Fig. 9, we compare the attenuation curves in a CAE-W as
its geometry tends to a CG. Contrary to the previous example,
here we change the eccentricities and focal distance in each
curve such that the largest axes of the ellipses maintain always
the same value as the radii of the CG. We can see that atten-
uation increases and cutoff decreases as the CAE-W becomes
more circular. With , the shorter axis of the ellipse is

0.5% smaller than the largest axis, and the curves get very close.
Similar to the above example, the curves intersect at a specific
frequency . The CAE-W presents a lower attenuation than
the CG in the neighborhood around a minimum of.

Finally, a comparative chart between the factor of the
mode in a CR and the mode in a CAE-R is

given in Fig. 10. In order to have the same resonant frequency
and volume in both resonators asincreases, we select the
size of the cross sections and the physical quantities equal to
the example of Fig. 8. One result of this comparison is that the

factor in a CAE-R is 20%–40% greater than thefactor
for CR if both resonators operate in their first higher mode. By
making in (7) and (8), the upper limits of for TE
and TM modes are given by and

.

VI. CONCLUSIONS

The first-order perturbation method has been used to calcu-
late the attenuation and-factor parameters due to conducting
losses in CAE-Ws and CAE-Rs. An important consequence of
incorporating the inner elliptic conductor is that the odd modes
become more dominant than even modes, in particular, the mode

becomes the first higher mode in CAE-Ws. Normaliza-
tion of the attenuation constant andfactor makes it possible to
present for each mode a single chart for all possible combina-
tions of frequencies, eccentricities, focal separation distances,
and conductivities. It was found that the attenuation increases
and the factor decreases as the eccentricities of the conductors
get closer, and this occurs more rapidly as the eccentricities be-
comes smaller. Appropriate comparisons between CAE-Ws and
CGs exhibit the lower cutoff frequency and attenuation for the
elliptic geometry. In the same manner, it was found that CAE-Rs
present a larger factor than a CR with the same volume if
both work in their first higher mode. A supplement to this paper,
including the lossless solutions and additional figures, can be
found online.1
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